Collectionwise normality and extensions of locally finite coverings
نویسندگان
چکیده
منابع مشابه
A Note on Complete Collectionwise Normality and Paracompactness
1. A question that has aroused considerable interest and which has remained unanswered is the following. Is a normal Moore space metrizable? Both R. H. Bing and F. B. Jones have important results which go a long way toward answering this question. For example, Bing has proved that a collectionwise normal Moore space is metrizable [l ] while Jones has shown that a separable normal Moore space is...
متن کاملUniversal Locally Finite Central Extensions of Groups
DEFINITION. A group G is called a universal locally finite central extension of A provided that the following conditions are satisfied. (i) A <= (G (the centre of G). (ii) G is locally finite. (iii) (/1-injectivity). Suppose that A <= B <= D with A a (D, that D/A is finite, and that q>: B -> G is an ^-isomorphism (that is, q>{a) = a for all as A). Then there exists an extension q>: D -*• G of (...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملHamiltonicity in Locally Finite Graphs: Two Extensions and a Counterexample
We state a sufficient condition for the square of a locally finite graph to contain a Hamilton circle, extending a result of Harary and Schwenk about finite graphs. We also give an alternative proof of an extension to locally finite graphs of the result of Chartrand and Harary that a finite graph not containing K4 or K2,3 as a minor is Hamiltonian if and only if it is 2-connected. We show furth...
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1980
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-109-3-175-187